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Based on an analysis of experimental results, new equations are proposed for describ- 
ing the thermolnduced oscillations in nonunlformly heated tubes and a mechanical mod- 
el. 

It was observed [1-4] that in the equipment of cryogenic technology and, in particular, 
of helium technology, oscillations of the working medium may originate spontaneously, sus- 
talned by a steady flow of thermal energy. These spontaneous oscillations make the opera- 
tion of the units difficult and lead to an increase of volatility of the refrigerant, and 
are considered as extremely undesirable from the point of view of reliable operation of the 
facility. On the other hand, it is obvious that they can be used for intentional intensifi- 
cation of heat exchange. 

Among the different types of thermolnduced oscillations, the self-oscillations of an 
originally immobile column of helium in nonunlformly heated tubes will be considered here. 
Similar oscillations were described more than 125 years ago by Zondkhaus [5]. However, up 
to now they have been little investigated: There is no reliable theory of this phenomenon, 
no practical methods of calculating these oscillations have been developed, the conditions 
of their origin are totally unknown, as are reasons for the significant intensification of 
heat exchange as a result of thermoinduced oscillations. To some extent this is explained 
by the fact that there is no suitable identification of the experiments, and no models have 
been constructed which correspond to the experimental results. 

We shall consider the possibility of the origination of gas self-oscillations in tubes 
in the presence of a steady temperature gradient 8T~/Bx, starting from the acoustic model of 
laminar oscillations of the gas like the oscillations of an elastic rod. Here the parameters 
of the system: density p = Po(P~ + P+), temperature T = To(T~ + T+), pressure p = po(l + p+), 

and velocity v [p6(x)po, T6(x)To and Po are the values of the parameters in the steady state; 

p+, T+, and p+ are their dimensionless perturbations] are connected by the relations which 

express the local conservation of mass, the local equilibrium of forces, the equation of 
state and the equation of energy balance, which after llnearlzation with respect to the small 
parameters p+, T+, p+, and v have the form 

ap+ av 0p6 (i) 
a~+Ps--ax-x + ax v=o, 

V2.• ~ ap.  av Ox + - - ~ T . p 6 + c v = O ,  
(2) 

P+ = P+T6 -t- p~T+, p6T6 : 1, (3)  

ap+ • [OT+ aT8 ) -t-coT§ ~ A ~T~. 
--h-- = .----T ~ T  + "  a~ a~ (4) 

with the boundary conditions for a tube, open at one end 

v (x = O) = 0 

p (x = L) = 0.  
(5) 
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The heat exchange of the gas with the walls of the tube and the axial heat transfer are taken 
into account by the coefficients e > 0 and A > 0. As ~ > 0, h > 0, and usually ~2T+/~x2G~ 

321+ 
L-2T+, then the terms aT+ and --A~--~-in Eq. (4), where ~T+/~t occurs, play the same role as 

the frictional resistance cv [i] in Eq. (2), i.e., all these terms correspond to damping of 
the oscillations of the parameters v, p+, O+, and T+. In essence, this follows directly 

from the first law of thermodynamics and is related with the directional transfer of heat 
from a warm body to a cold body. 

When c = 0, ~ = 0, and A = 0, according to relations (i), (2), and (3), both the dens- 
ity and also the pressure and temperature are varying in phase with the movement or accelera- 
tion of the gas particles. The steady temperature gradient ~T~/~x and density ~P6/~x, caus- 
ing a constant flow of thermal energy, do not change this dependence. Therefore, the effect 
of these most important terms in the problem being considered is reduced only to a certain 
change (increase or decrease) of the natural frequency of the acoustic oscillations, which 
always attenuate when c, ~, and A > 0. According to estimates carried out of helium systems, 
damping of the oscillations by the action of the parameters ~ and A is considerably weaker 
than by the action of viscous friction. Neglecting the quantities e and A in a typical spe- 
cial case, when T 6 = I -- 0(x/L -- 1/2) and 0 = const, from the system of equations (1)-(4) 
after simplifications, we obtain 

From Eq. 

Ozo do = V2 [ O~ 0 (• do ] 
at'. q-c O----~ --~l-x2 - [ - Y  ---~x " (6) 

(6), with the boundary conditions (5), after exponential substitution of 

we obtain 

v = a~ exp (u exp \ L 

I (7) (~-t-c?)q- ~ ~12q- 4 

o(~-- :) 
ctg TI 
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Whence, ~ = Im y = V,/L[n' + 02(~- 1)214] */2 for c << ~, the damping coefficient ~ = 
0.5 sac. Consequently, the thermoinduced oscillations observed in practice cannot be de- 
scrlbedwlthln the scope of the rod model of acoustic oscillations with the boundary condi- 
tions (5). In this case, only the natural frequency of the gas--nonuniformly heated tube sys- 
tem is determined, and regardless of the experimental results it is found that the system is 
asymptotically stable. 

Usually, unconsidered end effects exert some influence, If it be supposed that the 
front of the oscillatory gas motion is continuous and unsmeared, then within the scope of the 
rod model it is obtained that the maximum compression P+max and the maximum heating up of the 

gas T+max have the profile (i + a/L)cos (0.5 ~x/L -- 2a) on the section 0 �9 x �9 L -- 2~, then 

as the maximum expansion P+mln and the cooling T+mln corresponding to it have the profile 

(i- a/L) cos (0.5 ~x/L) on the section 0 < x < L. As a result, on the section 0 < x < L- 
2a in the case of gas oscillations, a constant small heating up of the gas and tube occurs, 
and close to its end on the section L -- 2a < x �9 L, cooling occurs, It looks as if thermo- 
induced oscillations are reversible phenomena when the oscillations of the gas are sustained 
by a similar constantly existing nonuniform temperature distribution. 

It has been established by new experiments on the test rig (Fig. i), described in [i], 
that with thermolnduced oscillations, an increase of the displacement amplitude of the helium 
and a reduction of the pressure amplitude in the resonator sections of the equipment occur, 
conflicting with the representations of the adiabatic acoustic theory of the oscillations. 
Thus, e.g., during the thermoinduced oscillations of the pressure amplitude PoP& = 3 "102 N/ 
m 2, in a half-open tube of length L = 3 m, a displacement amplitude of the hellum was observed 
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of a = 0.2 m, whereas according to the acoustic theory, the displacement amplitude is deter- 
mined by the relation a A = (2L/~)p+ (Po = 105 N/m 2 is the average pressure in the tube dur- 

ing the period of the oscillations) and for the case being considered is equal to a A = 4. 
I 0  -s  m. 

On the photograph (Fig. 2) taken through a transparent slit of the dewar flask, the 
working tube 2 (Fig. l) can be seen and the helium ejected from it during the thermoinduced 
oscillations. These ejections clearly show the oscillation amplitude of the helium. The 
same amplitudes, but photographed poorly, can be seen also during the reverse path. 

As a consequence of the enhanced displacement amplitudes, the thermolnduced oscillations 
in helium equipment are accompanied by considerable heat preflows to the liquid helium, in- 
creasing the volatility of the helium in the system by a factor of 15 in our experiments. 

In the conditions being considered the rod analogy clearly is violated during exit of 
the gas from the tube. Here an intense remixlng of the gas "exhaled" from the tube occurs, 
and a considerable cooling of it occurs by the surrounding medium during the intense mass 
exchange with it, During the reverse motion of the gas, a part of the intermittently cooled 
gas enters the tube (Fig. 3), which is accompanied by a pressure drop in the tube and an in- 
tensification of the gas intake. Later, in the course of an almost complete period, the 
normal acoustic oscillations occur, which are damped under the action of friction and heat 
exchange [the parameters c, ~, and A in Eq. (i)-(4)]. At the start of the next period, a 
recurrent intermittent change of temperature takes place again, swinging the oscillations. 

These motions of the gas are relaxation oscillations, which are described approximately 
by the equation 

o r  

OV + Co Of 
at---7 - g f -  + .o.g t = o, 

[ (t = nt ,  + O) = (1 + A)[  (t = n t , - -  O) 

[ (t = nt , )  = (1 -(- A) exp (-- 0.5cot,) ~ (1 + A) (1 - 0.SCot,), 
f[t  = ( n - - 1 )  t,i 

(B) 

(9) 

3 
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Fig. i. Diagram of test rig for investigating thermoinduced 
oscillations and the mechanical model for describing their 
properties: i) dewar flask with liquid helium; 2) working 
tube; 3) pressure sensor. 
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Fig. 2 Fig. 3 

Fig. 2. Visual observations of thermoinduced oscillations. 

Fig. 3. Time-dependent temperature T+ near an open tube end with gas fluctuations 
under the conditions of mass transfer with an environment, 

where f is the magnitude of p+ or T+, or p+, averaged over the length of the tube; co is the 
generalized coefficient of viscous friction taking account of = and A, and Ro = fl when c << ~. 

The excitation of the oscillations depends on the degree of mass exchange between the 
gas emerging from the tube and the surrounding medium, which is expressed by the coefficient 
e, 0 ~ 41, and on the relative temperature drop ATT~ I , where AT is the temperature dif- 
ference of the gas emerging from the tube and the surrounding medium T~. In addition, tak- 
ing into account that the viscous friction is distributed over the whole length of the tube, 
and that excitation of the oscillations is directly related with their amplitude, we can 
write A = (a/L).(AT/T~)e. 

The coefficient of mass exchange depends to a significant degree on the local conditions 
and also on the amplitude of the oscillations. It has been visually observed (Fig. 2) that 
in the presence of local obstructions around the open end of the tube, reached by the gas 
wave as a result of the increased amplitudes of the oscillations, the front of the gas column 
is found to be strongly perturbed and diffuse. The turbulence of the front, in its turn, in- 
tensifies both the mass exchange and the heat exchange inside the tube and, as a result, in- 
creases the excitation of the oscillations. This is manifested differently on contact of the 
oscillating gaseous helium column with the liquid helium in the test rig (Fig. i) with the 
approach of the open end of the tube to the surface of the liquid helium. The considerable 
intensification of the thermoinduced self-oscillatlons observed in this case is explained as 
an increase of the coefficient of mass exchange e and also as an increase of the quantity 
ATT~ ~ during spraying of the liquid and an increase of its thawing in the tube 2 (Fig. I). 

It must be assumed that in the different equipment of cryogenic technology or with a 
different arrangement of the vibroactive tubes in one equipment, the parameters e and ATTar 
may have a significantly different but fairly predictable value, Moreover, when the condi- 
tions of the experiment are maintained even in different equipment of the same type, these 
parameters are found to be quite constant, 

Taking account of the loss of energy by the involvement in oscillation during mass ex- 
change of part of the gas from the surrounding medium (inlet losses) [6, 7], and in view of 
the relatively low friction and excitation, the condition of stability of the oscillations 
(8) is written in the form 

where 

c ~ - t  + O,6e, a L - l  ~ A _t ~ e _ i A T  a . - -  j 

r. 

~ - i  ~ -i/~-l-i, I = 0,SDV'-~7~. (lO) 
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Consequently, self-oscillations are excited here only in the presence of a random, not too 
small pulse, and only with the condition that ATT~* > 0.6 w ~ 2. In particular, this occurs 
in the conditions of the test rig of Fig. i, where cfi -t 0oI0 -2, ego 0.7, ATT~ l 0o4, and 
aL-XOo 2,10 -a. 

Under normal conditions, when c << ~ and A << i, the oscillations being considered dif- 
fer slightly from harmonic oscillations and then, in place of the quantity A, it is more con- 
venient to use its equivalent coefficient of negative friction ~-: 

In this case, the equation of energy balance is written in the form 

Op__~+ = ~ (-~-F o ? 8 )  
Ot •  + v  Ox . --~P+" (11) 

When solving Eq. (1)-(3) the specific properties of excitation of the oscillations in accord- 
ance with the model considered with violation of the rod analogy should be borne in mind. Be- 
cause of this, only oscillations of the lowest form should be considered, which are charac- 
terized by the maximum ejection of gas from the tube into the surrounding space, and the so- 
lutions of the higher forms of the system of equations (1)-(3) and (ii) should be detached as 
conflicting with the true excitation. The equation for the gas velocity is obtained from Eq. 
(1)-(3) and (11) 

OSv ~ ] Ov _ 
Ot----V + [c - -  2 (x - -  1) ~] ~ + [ ~  ( x - -  i)2 _ 2c,~[(x - -  1) Ot 

[ OSv 0 (• O~x +q~(~_l) ( O2v 0 
= v2" O-~x2 T - -  Ox - - V  + L " Ox " ( 1 2 )  

from which, assuming % equal to the quantity ~ = <~> averaged over the coordinate is a con- 
stant for small values of 0 and ~, the condition of stability follows: 

a2Q~ mr ~ << Q. (13) ( x - -  1 ) ~ < c <  8 ( •  1)cp 

Expression (13) determines the asymptotic boundaries of the region of stability for small and 
large coefficients of viscous friction c, which are characteristic for many oscillatory pro- 
cesses [6]. The displacement amplitude of the oscillating medium is expressed by the rela- 
tion 

2L [ qD(~.--1) ] a = p + - -  1+ (14) 

and is greater, the greater is the quantity @. 

In U-shaped tubes (Fig. i) an intense excitation of thermoinduced oscillations has also 
been observed. Here there is no explicit mass exchange with the surrounding space, but it 
takes place between the gas in the vertical and the condensate in the bent sections of the 
tube. Moreover, the oscillations here are sustained like the action of a thermal tube with 
the periodic throwout of condensate into the vertical warmer part of the tube. 

For greater visualization it is appropriate to further simplify the oscillatory system 
being considered by representing it in the form of a two-mass mechanical model (Fig. i), in 
which masses m c and m~0 correspond to the warm and cold parts of the mass of the gas column 
(helium), participating in the mass-exchange, the elasticities k,, ka, and ks represent the 
elasticities of the parts of the gas column, C c = C and C~0=--~ < 0 are the coefficients of 
positive and negative friction of the masses m c and me. 

The stability of this mechanical system is found from the analysis of the equations of 
motion 

o~xc Ox e 
m~ - ~ -  + C Ot + (k~ + k2) x~ - -  k2x~ = O, 

02x~ _ ~ Ox~ 
m~ at 2 at + (k 2 !- k3) x,p - -  k2x c = 0 

(15) 
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F ig .  4. Dependence o f  t h e  r a t i o  u o f  t he  c o e f f i c i e n t s  o f  f r i c -  
t / o n  and n e g a t i v e  f r i c t i o n  on the  r a t i o  o f  t he  masses mc/m iF f o r  
c M and~M § 0; 1) ks = 0, ka = 0.5k~; 2) k~ = 0, k~ = k~; 3) 
ks = 0, ka = 2k,; 4) ks = 4kt, ks = kt. The regions of stabil- 
ity are hatched. The dashed lines are the continuations of the 
branches bounding the regions of stability. 

and according to the Routh--Hurwitz conditions it is satisfied when the inequality 

PiP2 [m c (k2 + k3) + m~ (~  + kt) -- C . ]  > (ktk 2 ktk 3 + k2k~) F~ + mcm~F ~. (16) 

is fulfilled. Here Fx = m~C -- mcr and Fa = (k2 + ks)C -- (k2 + kx)~; x c and x~are the abso- 

lute displacements of the masses m c and m~, respectively. 

From condition (16) the asymptotic boundaries of the region of stability for small val- 
ues of ~ M are expressed by the relation 

m~k~ 
�9 ~, < c~, < ., - for ~, ~ 0 (17) 

�9 m~ (k 2 + k3) %~ "" 

where 

f 2 
m c C r 

l F = I I +  | /  112 �9 . _ _  _ _  _~= m2 , C~ t , q0~- 
r me me 

II  me 1 ( k' ' k2 / ~ 2  ~ -  k 3  m e )  2 
h 

mq~ 2 k 2 k 2 m,r 

The ratio of the displacement amplitudes a ~and a c 
ary of stability is determined by the expression 

of the masses m and m c at the bound- 

% _ k~ ,--' k 2 -- rn~..) 2 (18) 

a~ ka 
/ 

~2 = B-T- 1// B 2 kik2 + mcm~ kik3 + k2k3 B - -  kl+k~2mr + k a + k 3  
' 2m~ 

which is simplified similarly to relation (14). Here, just as in the case of thermolnduced 
oscillations, the displacement amplitude during oscillations of the system with negative fric- 
tion is greater than for the natural oscillations, comparable in stresses, in springs ~res- 
sure analog). 

The system considered can be stable only with a finite value of excitation ~ M, less than 

the limiting value ~M* ~ k2/mc x ~m~/k2 + ka W "x/2, to which corresponds the optimum deforma- 

tion CM,~ (ks/m c) /m@/ka + ks ~x/2. The ratio of the quantity qM* to the actually existing 

excitation ~ M expresses the margin of stability. The system is unstable for both small val- 

ues of the coefficient of friction c M and for large values. 
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In actual hydrodynamic systems the viscous resistance is small (c M 4< ~), the stability 
in this case is determined by the quantity u =~CM/@ M for c M and~ M § O, the dependence of 

which on the parameters of the system is represented in Fig. 4, in which the left-hand branch 
of the region of stability with argument mc/m~, corresponds to the first harmonic, and the 
right-hand branch corresponds to the second harmonic. The most stable are systems with iden- 
tical partial frequencies ~ = ~c, ~2 = (k2 + ks)/m ~and 2 = (k2 + k,)/mc, in which the 

c 
quantity u achieves the minimum value. 

Despite the simplicity of the mechanical model considered, it very well represents the 
many properties of thermoinduced oscillations observed in practice: increased displacement 
amplitudes during oscillations; low vibroactlvity of thermal systems in the form of single- 
side cooling of tubes closed from both ends with helium, and with a relatively high vibro- 
activity of systems in the form tubes with helium, closed at the warm end and open at the 
cold end, or U-shaped tubes with helium closed at the ends and cooled with helium (k3 = O, 
Fig. 2); a higher excitability of the first harmonic of the oscillations and a reduction of 
vibroactlvity with increase of length of the warm section of the tube L c for a constant 
length of the cold section L@. 

With regard to the excitation process of thermoacoustic self-oscillatlons itself, we 
associate it with breakdown of the rod analogy of acoustic oscillations during mass-exchange 
with the surrounding medium or with gas particles condensed specified points of the equipment. 
The model of relaxation oscillations is the most suitable for the correct description of 
these phenomena. 

NOTATION 

A, the coefficient of excitation; a, amplitude; c, coefficient of viscous drag; D, diam- 
eter; I, inertial number; k, coefficient of elasticity; L, length; m, mass; p, pressure; T, 
temperature; t,, period of oscillations; t, time; V,, velocity of sound; v, velocity; x, a 
coordinate; e, coefficient of radial heat transfer; y, generalized (.complex) frequency; ~, 
damping coefficient; ~, mass-exchange coefficient; | temperature gradient;~, adiabatic 
coefficient; A, axial heat-transfer coefficient; 9, kinematic viscosity; p, density; @, coef- 
ficient of negative friction; ~, angular frequency; m, partial frequency. 

i, 
2. 
3. 
4. 
5. 
6. 
7. 
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